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Abstract
The frequency-dependent complex heat capacity has been derived for spatially restricted
systems with a bulk phase transition. It is demonstrated that internal energy relaxation is
determined by the eigenvalues of the Fokker–Planck operator, providing an insight into the
symmetry of the reduced free energy. The size driven properties of the energy relaxation rates
are discussed and the universal ratio between them has been found.

1. Introduction

The first notion of frequency-dependent complex heat capacity
seems to have appeared in literature at the beginning of the
20th century in scientific works concerning the propagation
of sound in various media [1]. Anomalous ultrasonic
attenuation in polyatomic gases [2] and the critical attenuation
of ultrasound near the critical point [3] have been explained in
terms of the dynamic heat capacity. The first measurements
using specific heat spectroscopy were made on glycerol near
the glass transition [4, 5]. It was shown that the frequency-
dependent specific heat of supercooled liquids is directly
related to a frequency-dependent longitudinal viscosity [6].
Dynamic calorimetry was recently successfully applied to
ferroelectric and ferromagnetic systems [7–12].

Several theoretical approaches for the formulation of the
dynamic specific heat were suggested, e.g., generalized hydro-
dynamics [13], the fluctuation-dissipation theorem [14], pro-
jection operator formalism [15], the generalized constitutive
equation [16], the framework of the free energy landscape [17],
or non-equilibrium considerations [18]. Simulations have been
able to reproduce various qualitative features [15, 19]. Nowa-
days, the dynamic heat capacity continues to be explored from
both experimental and theoretical perspectives, in anticipation
that dynamic calorimetry would provide an insight into the
energy landscape dynamics.

Usually one associates the imaginary part of a linear
susceptibility with the absorption of energy by the sample
from the applied field. However, in the case of the
generalized calorimetric susceptibility there is no net exchange

of energy between the sample and the surrounding heat bath
during a complete cycle of a frequency-domain specific heat
experiment. The imaginary part of the frequency-dependent
complex heat capacity is always connected to the net entropy
produced during the experimental timescale by oscillatory heat
exchange between the sample and the heat bath. This creation
of entropy is always due to a particular physical irreversible
process in the vicinity of thermodynamic equilibrium, for
which the relaxation time plays a major role. If heat is supplied
in a shorter time interval than this relaxation time constant, the
corresponding internal degree of freedom does not contribute
entirely to the equilibrium value of the measured heat capacity
under the timescale of observation. In this situation, the
measured heat capacity becomes a dynamic quantity. During
the relaxation of the slow internal degree of freedom a certain
amount of heat is lost, consequently, this amount of heat does
not participate in the equilibrium part of the measured heat
capacity [20, 21].

In the present communication, we study the peculiarities
of the dynamic heat capacity associated with the order
parameter distributed in the bistable potential. We consider
a soft potential, naturally arising in the Landau theory of
the bulk second-order phase transitions [22]. Various size
effects on the internal energy relaxation and dynamic heat
capacity are investigated by means of the Fokker–Planck
equation formalism. Hereafter, we assume that temperature is
homogeneous in all parts of the system at any time and it has
no time to relax towards the thermal bath.
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2. Stochastic equation of motion

We start with the one-dimensional equation of overdamped
motion for the temporal evolution of the non-equilibrium order
parameter x , namely

dx(t)

dt
= −∂ F̃(x; T )

∂x
+

√
T

V
ζ(t). (1)

Here ζ(t) is the zero mean Gaussian white noise with the
correlation function 〈ζ(t)ζ(t ′)〉 = 2δ(t − t ′), T is temperature,
V is the volume of the sample. The temperature-dependent soft
potential F̃ is taken in the Landau form [22]

F̃(x; T ) = α

2
(T − T ∞

c )x2 + 1

4
x4, (2)

and has the meaning of non-equilibrium free energy density.
Here the constant α > 0, and T ∞

c is the temperature of bulk
second-order phase transition. The potential F̃(x) is bistable if
T < T ∞

c , and monostable if T > T ∞
c .

The considered model describes the sample whose
dimensions are smaller than the correlation length of the
order parameter fluctuations (analogously to zero-dimensional
superconductors [23]). In equation (1) the finiteness of
the system induces stochastic motion of the order parameter
leading to the existence of the internal noise ζ . The
latter vanishes in the bulk limit (V → ∞) leaving
us with the Landau–Khalatnikov equation which describes
the deterministic relaxation of the order parameter to its
equilibrium value. The size driven crossover from stochastic
behavior to a deterministic one is a substantial feature of this
approach.

Note that in the present scheme the inhomogeneity of the
order parameter fluctuations is neglected. Another limiting
case is the Gaussian approximation [24], which incorporates
the spatial variance of fluctuations, but neglects, first of all,
interwell motions in the potential (2). Both of these particular
cases stem from the general Landau free energy expansion
where the second- and the fourth-order terms, as well as the
squared gradient of order parameter, are taken into account.

An alternative description of the stochastic order
parameter x may be given in terms of the Fokker–Planck
equation formalism for probability density P(x, t)

dP(x, t)

dt
= LFP P(x, t), (3)

where

LFP = ∂

∂x

∂ F̃(x; T )

∂x
+ T

V

∂2

∂x2
(4)

is the Fokker–Planck operator with eigenvalues λi and
eigenfunctions ψi (x). The stationary solution of equation (3)

is given by Pst(x) = ψ0(x) ∼ exp(− V F̃(x;T )
T ) and λ0 = 0.

3. Dynamic heat capacity

The equilibrium properties of the system are determined by the
partition function

Z(T, V ) =
∫ ∞

−∞
exp

{
− V F̃(x; T )

T

}
dx . (5)

According to the thermodynamic definition of the internal
energy E = F + T S, where F = −T ln Z is the equilibrium
free energy and S = − ∂F

∂T is the entropy, one can find that
E = 〈ε〉st with

ε = V (− 1
2αT ∞

c x2 + 1
4 x4) (6)

and 〈· · ·〉st = ∫ ∞
−∞ · · · Pst(x) dx . For the static heat capacity C0

we correspondingly have

C0 = ∂

∂T
E = 1

T 2
(〈ε2〉st − 〈ε〉2

st). (7)

The expression (7) agrees with the well-known property that
heat capacity in the constant volume case is proportional to
the mean value of the squared fluctuations of the internal
energy [22].

Recently, the fluctuation-dissipation theorem for the
frequency-dependent heat capacity was established [14].
According to this result, the frequency-dependent heat capacity
may be expressed within the linear response approximation
as a linear susceptibility describing the response of the
system to arbitrarily small temperature perturbations away
from equilibrium

C(	) = 1

T 2

(
〈ε2〉st − i	

∫ ∞

0
〈ε(0)ε(t)〉ste

−i	t dt

)
. (8)

Here 	 is the frequency of the temperature ‘field’ varying in
time. Thus, the dynamic heat capacity is a complex number
whose real and imaginary parts must obey the Kramers–Kronig
relation as a result of causality and linearity.

To obtain the frequency-dependent heat capacity for
ε given by equation (6) we have to find the appropriate
correlations of xn with n = 2, 4. In accordance with [25],
the time correlation Kn,m(t) of two random variables, xn and
xm , can be written in the steady state as

Kn,m(t) ≡ 〈x(t)n x(0)m〉st =
∑
i�0

ui,nvi,me−λi t , (9)

with

ui,n =
∫ ∞

−∞
xnψi (x) dx, (10)

vi,m =
∫ ∞

−∞
xmϕi (x)Pst(x) dx . (11)

Here ϕi are the eigenfunctions of the adjoint Fokker–Planck
operator L†

FP and ϕ0(x) = 1. Thus, u0,n = v0,n = 〈xn〉st.
For a symmetric (even) potential (2) the stationary probability
density Pst(x) = ψ0(x) is an even function of x and the parity
of ψi (x) alternates. This gives us u2i+1,2n = 0. Truncating the
series (9) after the fourth term, we then have

K2n,2m(t) = 〈x2n〉st〈x2m〉st + gn,me−λ2t + hn,me−λ4t , (12)

where gn,m = u2,2nv2,2m and hn,m = u4,2nv4,2m . Note that the
expansion (9) stops after a certain term, strictly speaking, only

2
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Figure 1. The plots of the static specific heat capacity c0 versus temperature T (left) for various volumes V = 0.1 (triangles), V = 1 (circles),
V = 10 (squares), V → ∞ (solid curve) and versus volume V (right) for fixed temperature T = 9.5. Here we use T ∞

c = 10 and α = 10.

for a harmonic potential. According to the standard definition
of Kn,m(t) one can obtain

K2n,2m(0) =
∫ ∞

−∞
x2n+2m Pst(x) dx = 〈x2n+2m〉st, (13)

K̇2n,2m(0) =
∫ ∞

−∞
(L†

FPx2n)x2m Pst(x) dx

= −2n

〈
∂ F̃(x; T )

∂x
x2n+2m−1

〉
st

+ T

V
2n(2n − 1)

× 〈x2n+2m−2〉st, (14)

where the dot denotes the derivative with respect to t . The
comparison of equations (13) and (14) with (12) gives

gn,m = 〈x2n+2m〉st − 〈x2n〉st〈x2m〉st − hn,m, (15)

hn,m = K̇2n,2m(0)+ λ2(〈x2n+2m〉st − 〈x2n〉st〈x2m〉st)

λ2 − λ4
. (16)

Using above equations, we obtain the frequency-dependent
heat capacity by means of the fluctuation-dissipation theo-
rem (8), namely

C(	) = C0

(
a

a + b

λ2

λ2 + i	
+ b

a + b

λ4

λ4 + i	

)
, (17)

where

a = α2T ∞2
c

g1,1

4
− αT ∞

c

g1,2 + g2,1

8
+ g2,2

16
, (18)

b = α2T ∞2
c

h1,1

4
− αT ∞

c

h1,2 + h2,1

8
+ h2,2

16
. (19)

The static heat capacity (7) may be written in terms of a and b
as C0 = V 2

T 2 (a + b).
The frequency-dependent heat capacity (17) indicates that

generally for the symmetric (even) potential the timescales of
the energy relaxation are defined by the even eigenvalues of the
Fokker–Planck operator. For the harmonic potential only the
second eigenvalue of the appropriate Fokker–Planck operator
contributes to the relaxation process [14]. For the asymmetric
(odd) potential non-zero time correlations K2n+1,m(t) appear.
This implies that the odd part of the spectrum {λi } will be
also involved in the energy relaxation. Thus, the frequency-
dependent heat capacity provides an insight into the symmetry

of the reduced free energy F̃ and internal energy ε. In contrast
to the prediction our model makes on the energy relaxation,
it is rather the dominance of the lowest odd eigenvalues
(e.g., λ1, λ3) that has been obtained for the order parameter
relaxation [26].

While the order of glass transition is still under discussions
(see, for instance, [4, 27–29]), very similar suggestions were
recently made for glassy dynamics described by the two-level
model [30, 31]. Namely, if one visualizes the β-processes
originating from activated dynamics within a metabasin, where
escape from one metabasin to another is taken to describe an
α-process within the landscape paradigm of glassy dynamics,
then for a symmetric double well only the β-peak appears in
the frequency spectrum of the imaginary part of the dynamic
heat capacity. However, it is rather the predominance of the
α-peak that has been observed for the dielectric relaxation.

4. Results and discussion

Let us analyze the volume-dependent peculiarities of the
internal energy relaxation and the dynamic heat capacity. In
figure 1 the static specific heat capacity c0 = C0/V is
illustrated. In the temperature scale this quantity has a volume-
dependent maximum. As the volume increases, c0 approaches
its bulk limit, known from the conventional Landau phase
transition theory, namely α2T/2 for T < T ∞

c and 0 for
T > T ∞

c . To obtain the bulk values analytically, one has to
compute the weak noise limit, evaluating the moments 〈xn〉 by
means of parabolic cylinder functions [32].

As the temperature is fixed, one can get enhancement of
the static specific heat capacity compared with its bulk value
by changing the volume of the system. For temperatures
below T ∞

c the maximum of c0 appears for a finite sample. As
the temperature increases the maximum of c0 shifts to larger
volumes, approaching the bulk value for T = T ∞

c . This
behavior can be related to the existence of the critical size [33].

The latter deviations from the Landau-like behavior are
essentially stochastic effects. One can relate the critical
region (more precisely, the pseudocritical one [34]) with the
temperature region where the static specific heat capacity
approaches its maximal value. While the internal energy itself
increases with temperature in the ordered phase, the dispersion
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Figure 2. The plots of the eigenvalues λ2 and λ4 versus temperature for various volumes V = 0.1 (triangles), V = 1 (circles), V = 10
(squares) and bulk limit V → ∞ (solid curve). Here we use T ∞

c = 10 and α = 10.

(fluctuations) of the internal energy approaches the maximal
value at the corresponding critical temperature. The decrease
of the volume leads to a noise driven redistribution of the
probability density (between essentially bi- and monostable
structure) at slightly lower temperatures. As the result, one
observes a lowering of the critical temperature with volume
decrease. The phase transition becomes diffuse due to the
fluctuational corrections to the Landau-type behavior. Similar
effects were also revealed experimentally in ferroelectrics.
Here the temperature of the specific heat jump appears to be
dependent on the film thickness or particle size, and there
was a distribution of these temperatures: the width became
larger with a temperature decrease [35–37]. This size driven
behavior is typical for the spatially restricted systems under
consideration [26]. An appropriate analysis of the static
specific heat in small superconducting particles was also made
for the complex order parameter in [23].

The eigenvalues λ2,4 were calculated numerically, solving
the corresponding Schödinger-like equation [38] by means of
the symplectic method, see, e.g., [39]. The energy relaxation
rates λ2,4 behave non-monotonically in the temperature scale
(see figure 2), having a minimum in the bistable region. A
similar behavior of the relaxation rates for the heat capacity
was also established experimentally near the ferroelectric
phase transition point [10]. As the volume increases, the
minimum of λ2,4 shifts towards the bulk critical temperature
T ∞

c . This is a consequence of the volume-dependent noise:
in larger samples the dynamics of the relaxation becomes
critical at higher temperatures. Moreover, the minimum of λ2,4

becomes deeper with a volume increase and minλ2,4 → 0
as V → ∞. A very similar non-monotonicity of λ2,4 also
appears in the volume scale when the temperature is kept fixed:
for T < T ∞

c the eigenvalues have a minimum for a finite
sample which shifts to larger volumes and becomes deeper as
T → T ∞

c .
In the bulk limit for T < T ∞

c we get

λ2 → α(T ∞
c − T ), λ4 → 2α(T ∞

c − T ), (20)

and for T > T ∞
c

λ2 → 2α(T − T ∞
c ), λ4 → 4α(T − T ∞

c ). (21)

Notably that the linearization of the free energy (2) above T ∞
c

leads to the harmonic (therefore, symmetric) potential with the
second and the fourth eigenvalue given in equation (21). For
the harmonic potential only the second eigenvalue contributes
to the dynamic heat capacity, i.e., above T ∞

c in the bulk limit
a 	= 0 and b = 0 in equation (17). However, the linearization
below T ∞

c leads to the shifted harmonic (asymmetric) potential
with the first eigenvalue 2α(T ∞

c − T ). Due to asymmetry,
the latter governs the leading time dependence in the time
correlation of the internal energy. Thus, below T ∞

c in the bulk
limit a = 0 and b 	= 0 in equation (17). The computation of the
weak noise limit leads to the same results. Therefore, for the
bulk dynamic heat capacity the leading timescale is given by
2α|T ∞

c −T | above and below T ∞
c . On the other hand, in case of

bulk susceptibility the corresponding timescales are different
above and below T ∞

c , namely, 2α(T ∞
c − T ) for T < T ∞

c
and α(T − T ∞

c ) for T > T ∞
c [40]. Consequently, the ‘law

of two’ [22] is valid for the order parameter relaxation, but is
violated for the energy relaxation.

As the volume increases the heat capacity will contain
a contribution which relaxes increasingly slowly near the
transition temperature, leading to a longer waiting time for the
energy to attain its equilibrium value (	 > λ2,4). Therefore,
in real measurements the energy response will show a time
delay, and one can expect that the dynamic heat capacity
will contain the information about this slow dynamics. On
the other hand, when the dynamics of the system occurs at
a rate faster than the probing frequencies 	 < λ2,4, then
the energy relaxes faster to its equilibrium value and the
dynamic heat capacity will coincide with its usual static value.
In this case the modulus of the heat capacity is determined
mostly by the real part, and its imaginary part is small.
Unlike the bulk limit, in the finite sample the dynamic heat
capacity becomes frequency independent at low frequencies
	 < λ2,4 due to minλ2,4 	= 0 (figure 3). In particular, it
means that in finite sample the energy relaxes faster than the
order parameter. As the frequency increases (	 > minλ2),
the critical region of the finite sample contributes to the
dynamic capacity. As a result, its imaginary part rapidly
increases, while its real part tends to decrease. The peak of
the modulus gets smaller in height and more rounded (see
also [7, 41]). For frequencies minλ2 < 	 < minλ4
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Figure 3. The plots of the real and imaginary part of the dynamic specific heat capacity c versus temperature for V = 1 (points) and V → ∞
(solid curves) with frequencies	 = 1 (triangles),	 = 10 (circles) and 	 = 50 (squares). For the bulk limit the frequency increases from the
right curve to the left one. Here we use T ∞

c = 10 and α = 10.

overlapping between real and imaginary parts occurs. A
further increase in frequencies (	 > minλ4) leads to the
monotonic decrease of both parts. The dynamic heat capacity
for the restricted system becomes almost indistinguishable
from its bulk value at high frequencies. One can conclude that
there is a crossover between the stochastic and deterministic
behavior of the energy response, which is supported by the
finite minimal value of the energy relaxation rate in finite
samples. Similar complementarity between the stochastic and
deterministic response of the order parameter was recently
established in terms of the dynamic susceptibility [42]. These
peculiarities are closely related to the stochastic nature of
the order parameter in the finite sample experiencing, in the
bulk limit, deterministic behavior and the second-order phase
transition.

According to the formalism of De Donder–Prigogine–
Defay, the dynamic heat capacity obtained is the consequence
of irreversible thermodynamics near equilibrium in the linear
regime [20]. The thermodynamic irreversibility of a peculiar
degree of freedom inside the sample is the explanation of
the frequency-dependent heat capacity. The time-averaged
irreversibility power and time-averaged irreversible entropy
production is directly proportional to the imaginary part of
the complex heat capacity. Thus, as the frequency of the
temperature perturbation or volume of the system increases the
thermodynamic irreversibility of the critical region increases.
Therefore, the complementarity between stochastic behavior
in small systems and deterministic behavior in large systems
is accompanied by a crossover between the reversible and
irreversible thermodynamics of the critical region.

The phenomenological finite-size scaling theory states,
that when the correlation length ξ(T ) in the vicinity of the
critical temperature attains a magnitude of the order of the
characteristic size L of a finite system, deviations from the
genuine critical behavior will set in: the singularities in the
thermodynamic functions become rounded extrema located in
somewhat shifted positions [34, 43, 44]. It is predicted that the
finite-size effects on the critical phenomenon are controlled by
the ratio L/ξ . This assertion determines the shift of the critical
temperature of a finite-size system, particularly, the lowering

of Tc as the dimension decreases

Tc = T ∞
c − AL− 1

ν , (22)

where A is a non-universal positive constant and ν is the
critical exponent of the correlation length ξ . From figures 1
and 2 it follows that in the critical region the heat capacity
and the energy relaxation times λ−1

2,4 have a maximal value.
For further analysis, we will be interested in the temperatures
at which the relaxation time λ−1

2 takes its maximal value,
reflecting in such a way a slowdown effect for the energy
fluctuations in the given dimension of the sample L ∼ V

1
3 . We

will associate these temperatures with finite sample (pseudo)
critical temperatures Tc. From figure 4 it follows, that the
temperature Tc decreases with a decrease of the volume,
resembling experimental data [45–47] and our previous results
concerning the order parameter relaxation [40]. For sufficiently
large systems we obtain ν = 0.719 (for α = 1) and ν =
0.665 (for α = 10), which is close to the prediction of the
hyperscaling relation ν ≈ 2

3 in the three-dimensional case [22].
In fact, in the Gaussian approximation one has ν = 1

2 . Thus,
in the present approach one can construct the quantity being an
analog of the correlation length ξ . This length scale determines
the behavior of the critical temperature Tc in sufficiently large
samples. However, the appearance of another length scale in
sufficiently small systems breaks down the shift equation (22).
Namely, the critical temperature behaves in sufficiently small
systems as Tc ∼ L p, where p ≈ 3. The approximate relation
for the transition temperature was derived in [40]

L ∼ ρ(Tc)ξ(Tc), (23)

where ξ(T ) ∼ (T ∞
c − T )−2/3 has the meaning of the

correlation length in the ordered phase and ρ(T ) ∼ T 1/3.
From equation (23) it follows, that the phase transition in
sufficiently large samples (Tc ≈ T ∞

c ) is determined by the
condition L ∼ ρ(T ∞

c )ξ(Tc) ∼ ξ(Tc). However, in smaller
systems (Tc ≈ 0) the critical behavior is driven by the thermal
fluctuations and L ∼ ρ(Tc)ξ(0) ∼ ρ(Tc), where the coefficient
of proportionality depends on α. This essentially reflects
the competition between two characteristic length scales on
the critical behavior in the spatially restricted system (see

5
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Figure 4. The plot of the critical temperature Tc versus the linear
dimension of the system L = V 1/3 for α = 1 (points). The bulk
transition temperature is T ∞

c = 10. The left dashed line is
determined by the condition L ∼ ρ(Tc), the right dashed line by the
condition L ∼ ξ(Tc), i.e. by equation (22). The solid line
corresponds to equation (23).

figure 4). The crucial role of the correlation length ξ in large
systems has to be devolved to the length ρ in small samples.
The length ρ also determines the leading length scale for the
transitional behavior in the vicinity of the critical size (see, for
details, [40]).

For the energy relaxation rates λ2,4 we predict, for finite
samples, the universal volume-independent ratio at the bulk
critical temperature T ∞

c , namely

RC = λ4

λ2
� 2.86. (24)

For sufficiently low and high temperatures this ratio coincides
with the bulk value RC = 2. The value (24) is about two times
smaller as compared to Rχ = λ3

λ1
� 6.04, found for the rates

λ1,3 of the order parameter relaxation in finite samples [42]. In
fact, for glass formers close values of Rχ were derived for both
α- and β-relaxation [48].

5. Conclusion

We have obtained and analyzed the dynamic heat capacity by
means of the Fokker–Planck equation approach, considering
the non-equilibrium order parameter as an internal degree of
freedom. The frequency-dependent heat capacity provides
an insight into the symmetry of the reduced free energy and
internal energy. We have found that in the symmetric case
the dynamics of the energy relaxation is determined by the
lowest even eigenvalues of the Fokker–Planck operator λ2,4.
In fact, for the order parameter relaxation corresponding rates
are given by the lowest odd eigenvalues λ1,3. The analysis
of λ2,4 shows that the energy relaxation slows down in the
critical region. It is demonstrated that the complementarity
between stochastic behavior in small systems and deterministic
behavior in large systems is accompanied by a crossover
between reversible and irreversible thermodynamics of the
critical region. The peculiarities of the energy relaxation
indicate the size driven competition of the two characteristic
length scales in the critical behavior. The crucial role of
the correlation length in large systems has to be devolved to

the ‘fluctuational’ length in small samples and, particularly,
in the vicinity of critical size. At the bulk transition
temperature a universal ratio for the energy relaxation rates
λ2,4 is predicted. Application to the calorimetric measurements
in various systems, e.g. ferroelectric particles and ceramics,
seems to be possible.
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